
Splash of Code

Blades of Grass

Learn JavaScript by Making Computer Art

Joel Dare

2
Copyright © 2019

Foreword

I believe the best way to learn programming is by typing someone

else's code. You'll have to read it all, in order to type it, and you'll

probably make a few mistakes. Then you'll have to learn how to

spot and correct errors.

This is a short book. It's short for a few reasons. First, because

you'll find that copying someone else's code, although not difficult,

takes quite a bit of time. You'll probably have a few challenges the

first time, but re-check the code and try again and it will become

easier. Second, It's short because I like reading short books and

hope you will too. Like you, I'm busy doing things I love. I work

full time and have dozens of hobbies that keep me busy. I hope

you'll be glad this book gets to the point quickly. Third, this book is

created in the spirit of “zines”. Zines are short small-circulation

self-published booklets. They’re an art form that I’ve discovered

and love.

In each book you'll make an art piece by typing code from these

pages into your computer. No previous experience, special tools,

or skills are necessary. Along the way you'll start to absorb some

computer programming techniques. In the end you'll create an art

piece that's fun to display and discuss.

You’ll be working in JavaScript, a language that works in your web

browser. If you’d like to go a little deeper, read How to Code for a

quick introduction to JavaScript programming. It provides a basic

understanding of the JavaScript console, data types, variables,

math, and functions. You should find the background information

there helpful and interesting.

Introduction

Our goal is to create a simple, abstract, image inspired by the

plush green lawns of summer. I’ll print mine from an old black and

white laser printer on standard paper. If you want to print yours,

any printer will do.

Remember that you don’t need to understand everything you’re

entering. Just relax and copy the code.

Getting Started

You’ll need a computer with a web browser. Nothing else is

required. I’ve created a basic HTML file for you on CodePen, a tool

that lets you write code online. Open the URL below to get started.

https://codepen.io/codazoda/pen/aPVGGx

This book includes both a Complete Code listing and a Code Walk

Through. The walk through explains each of the small sections in

more detail. You can start at either section. If you want to get right

to work, start with the Complete Code. If you’d rather read a little

more about it, start at the Code Walk Through and read it all the

way through. Once you’re ready to start, turn to the Complete

Code section and retype the code into CodePen.

The project consists of two files. An HTML file that you won’t need

to edit and a JavaScript file. You’ll retype the code into that

JavaScript file.

As you work on this project you’ll probably run into typos that

create errors. If the image doesn’t draw at all, or in a way that you

expect, double check that you typed everything correctly and then

look at the output in the developer console to see if there are any

errors. Because each browser is different, you’ll want to search the

internet for instructions on how to open the developer console in

your particular web browser.

Once you’ve created an image that you’re happy with you can save

it by right clicking on the image and selecting Save Image As.

Complete Code

// Setup some params
var width = 4 * 300;
var height = 6 * 300;

// Grab the canvas element from the page
var canvas = document.getElementById("myCanvas");

// Set the canvas width and height
canvas.width = width;
canvas.height = height;

// Grab the 2D context of the canvas to draw on
var ctx = canvas.getContext("2d");

// Loop a bunch of times
var blades = 250;
var i = 0;
for(i=0; i<=blades; i++) {
​ // Pick a random starting location
​ let startX = rand(-50, width+49);
​ let startY = rand(height*.10, height*.50);
​ // Pick a color
​ let gray = rand(0, 150);
​ // Draw the blades
​ grassBlade(startX, startY, gray);
}

// Draw a blade of grass
function grassBlade(x, y, g) {
​ let offset = rand(0, 100);
​ let direction = rand(0, 1);
​ let grays = g + ", " + g + ", " + g;
​ let rgb = "rgb(" + grays + ")";
​ ctx.beginPath();
​ ctx.strokeStyle = rgb;
​ ctx.lineWidth = 5;
​ ctx.moveTo(x, y);

​ if (direction === 0) {
 ​ ctx.lineTo(x-offset, height);
​ } else {
 ​ ctx.lineTo(x+offset, height);
​ }
​ ctx.stroke();
​ ctx.closePath();
}

// Pick a random number
function rand(min, max) {
​ max = max + 1;
​ let rand = Math.random();
​ return Math.floor((rand * max) + min);

}

Code Walk Through

In this section we’ll discuss how the code works but we’ll jump

around a bit. Read this section all the way through and use the

Complete Code listing as your reference when typing the code.

The first thing we do is set up some basic page parameters. We

want the finished image to be 4 inches wide and we’ll multiply that

by 300. That will give us 300 pixels, or dots, per inch on the

printed page. We’ll also set the height to six inches and multiply

that by the same 300.

// Setup some params​
var width = 4 * 300;​
var height = 6 * 300;

Next we grab the canvas element from the html page and assign it

to a variable called canvas.

// Grab the canvas element from the page
var canvas = document.getElementById("myCanvas");

Now that we have our canvas element we need to set it’s width and
height to those variables we created initially.

// Set the canvas width and height
canvas.width = width;
canvas.height = height;

In order to draw on that canvas we need to grab it’s context and we’ll
set that in a variable called ctx.

// Grab the 2D context of the canvas to draw on
var ctx = canvas.getContext("2d");

We’re going to need to generate a bunch of random numbers. The

way you pick random numbers in JavaScript is a bit lengthy so

we’re going to write a short rand() function to make our code a bit

more concise.

// Pick a random number
function rand(min, max) {
 max = max + 1;
 let rand = Math.random();
 return Math.floor((rand * max) + min);
}

I typically organize my functions at the bottom of my JavaScript code.
As such, you’ll want to move your cursor back up above the rand()
function you just wrote and continue from there.

Now we’re almost ready to draw something.

We’re going to draw a bunch of lines that represent blades of grass.
To do that, we’ll create a loop and generate 250 blades.

// Loop a bunch of times
var blades = 250;
var i = 0;
for(i=0; i<=blades; i++) {
 // Looped code goes here
}

Each pass through this loop we’re going to pick a random starting
point and then draw a line from that point to the bottom of the
canvas.

Pixel coordinates are specified as x and y. The x axis is the horizontal
position on the page starting at zero and the y axis is the vertical
position on the page also starting at zero. That means that 0,0 is the
pixel at the top-left corner of the page.

We’re going to start our line, for each blade of grass, at any position
on the x axis up to 50 pixels off the canvas. Because the left side is

zero, we’ll allow it to start anywhere from -50 to the full width of the
page plus 49. In other words, our random number will be between
-50 and the canvas width + 49.

For the y axis we’ll want each blade to start in the top half of the page
but not in the top ten percent of the page. So, we’ll pick a position on
the y axis anywhere from ten percent down the page to 50 percent
down the page.

 // Pick a random starting location
 let startX = rand(-50, width+49);
 let startY = rand(height*.10, height*.50);

We’re also going to draw each blade in a slightly different shade of
gray. As a result we need to pick a random gray amount between 0
and 150.

 // Pick a color
 let gray = rand(0, 150);

We’re going to make a function for drawing each blade of grass. That
function will take an x and a y argument for those starting locations
we talked about, as well as a g argument for the gray color. We’ll put
this function just above the rand() function we covered earlier.

// Draw a blade of grass
function grassBlade(x, y, g) {
 // Function code goes here
}

For each blade we’re going to select a random offset. This offset will
be used for how far the blade leans. We’ll also select a direction value
for the direction it will lean.

 let offset = rand(0, 100);
 let direction = rand(0, 1);

Next we’ll set up an RGB string to set the color for the grass blade.
Because it’s gray, we’ll repeat the value three times and concatenate
that into a string.

 let grays = g + ", " + g + ", " + g;
 let rgb = "rgb(" + grays + ")";

Now we’ll start the blade. We’ll call the beginPath() method, set the
stroke style to the rgb value we created above, and set the line width
to 5 pixels. Finally we’ll move the cursor to the x, y starting position
for this blade.

 ctx.beginPath();
 ctx.strokeStyle = rgb;
 ctx.lineWidth = 5;
 ctx.moveTo(x, y);

If the direction of the offset is 0, we’ll have the blade lean to the right.
In that case, we’ll subtract the random offset we picked earlier and
draw a line to that offset and then to the very bottom, the height, of
the canvas. Otherwise, we’ll have the blade lean to the left, so we’ll
add the random offset to x and draw that line to the bottom of the
canvas.

 if (direction === 0) {
 ctx.lineTo(x-offset, height);
 } else {
 ctx.lineTo(x+offset, height);
 }

Finally, we’ll make the stroke that we’ve defined and close the path.

 ctx.stroke();
 ctx.closePath();

Now that we’ve got a function for drawing a blade of grass we’ll move
back into our loop and draw each blade of grass.

 // Draw the blades
 grassBlade(startX, startY, gray);

That’s it. Now we should be able to refresh the page and see how it
looks. Because we’re using random positions the image will look
different each time it’s drawn. When you’re happy with the result
you can save it by right clicking on the image and selecting Save

Image As.

More Reading

Splash of Code is a complete series of short zines. You’ll find

additional issues on our website at the address below.

https://splashofcode.com

