
Splash of Code

Falling Rain

Learn JavaScript by Making Computer Art

Joel Dare

Copyright © 2019

Forward

Years ago, I created a software program called

ButtonWiz. I gave it away in magazines and on the

Internet. When you started the program it would

ask you to pay a small fee if you liked and wanted to

continue using it. In its heyday it was downloaded

nearly a thousand times a month and about 5% of

those people paid for it. It was exciting and it was a

fun little side project for me.

As ButtonWiz started to pick up steam my employer

asked me to focus on his small company. I could see

potential in the company and thought I might be a

big part of it someday. I stopped making ButtonWiz

and focused on my work.

A handful of years later I left that job for another.

Although it was a small success, I've missed the

community that formed around ButtonWiz, the

feedback I received and the joy it brought people.

As you learn to code, I hope you create amazing

things that bring you as much joy as my code brings

me.

Introduction

Splash of Code is a series of short guides that walk

you through the steps for creating artwork using

computer programming. We’ll be working in

JavaScript, a language that works in your web

browser with no additional tools.

A very basic understanding of JavaScript is helpful

but not completely necessary. Read my guide, How

to Code, for a quick introduction to JavaScript. That

will help you with a basic understanding of the

JavaScript console, data types, variables, math, and

functions. You may find the background

information there helpful.

Our goal is to create a simple image inspired by the

heavy rain of a summer night. I’ll print mine from

an old black and white laser printer on standard

paper. If you want to print yours, any printer will

do.

I’ve provided the complete source code for this

project so you can retype it from the code listing

here. By doing so you should end up with a finished

piece of art that’s unique and that you can print,

frame, and display. You’ll also start to learn some

JavaScript programming. You don’t need to

understand everything right away. Just relax and

copy the code. You’ll be creating great artwork and

you should start to learn a few things as you go

along.

Learning to code requires a lot of patience and

repetition. You won't understand everything by

creating this one project. In fact, your first few

projects may be more frustration than

enlightenment. Keep trying. The learning comes

over time.

If you dedicate yourself to creating a dozen projects,

you'll start to understand the key concepts. The

more you search, study, and evaluate, the more

you'll learn. Before you know it you'll find yourself

considering improvements and alternatives for the

code you're reading and writing.

The Coordinate System

When we draw on a computer we typically use a two

dimensional coordinate system. The screen acts as a

plane and we specify points on the plane using a set

of numerical coordinates. Imagine laying a ruler

across the screen. The position side to side is called

the x axis. Now imagine turning the ruler so it

measures up and down. This is called the y axis.

Each point is specified by a pair of numbers (x, y).

By default, the system starts at the top-left corner of

the drawing. That point is specified as (0, 0). The

point (400, 50) indicates 400 pixels from the left

and 50 pixels from the top.

Getting Started

You’ll need a computer with a web browser. Nothing

else is required. I’ve created a basic HTML file for

you on CodePen, a tool that lets you write code

online. Open the URL below to get started.

https://codepen.io/codazoda/pen/aPVGG
x

Start at the Code Walk Through and read it all the

way through. There I’ll explain each of the small

sections in some detail. Don’t worry if you don’t

understand most of it. Understanding it comes with

repetition. Once you’ve read it over turn to the

Complete Code section and re-type the code into

CodePen. You can also go back to the Code Walk

Through for a little overview of anything you want

more information about. Then search the internet

for more detailed explanations.

The project consists of two files. An HTML file that

you won’t need to edit and a JavaScript file. You’ll

retype the code in this guide into that JavaScript

file.

https://codepen.io/codazoda/pen/aPVGGx
https://codepen.io/codazoda/pen/aPVGGx

As you work on this project you’ll probably run into

typos that create errors. If the image doesn’t draw,

or doesn’t draw in the way you expect, double check

that you typed everything correctly and look at the

output in the developer console to see if there are

any errors. Search the internet for instructions on

how to open the developer console in your

particular web browser.

Once you’ve created an image, you can save it by

right clicking and selecting Save Image As.

Code Walk Through

The first thing we do is set up some basic page

parameters. We want the finished image to be 4

inches wide and we’ll multiply that by 300. That will

give us 300 pixels, or dots, per inch on the printed

page. We’ll also set the height to six inches and

multiply that by the same 300.

// Setup some params
var width = 4 * 300;
var height = 6 * 300;

Next, we’ll grab the canvas element from the html

page. We use this to refer to an object on the page

where our image will be drawn. A lot of our other

commands will draw on this canvas element.

// Grab the canvas element from the page
var myCanvas = document.getElementById("myCanvas");

By default the canvas is set to a width of 300 and a

height of 150. We want to adjust that so we set the

width and height to the values we calculated above.

myCanvas.width = width;
myCanvas.height = height;

The canvas element has a “context”, which we'll use

later for drawing on the canvas. Here, we assign that

context to a variable called ctx.

// Grab the 2D context of the canvas to draw on
var ctx = myCanvas.getContext("2d");

When rain drops through the air it creates a

downward streak. We want to loop a bunch of times

drawing these streaks of rain. Each time through the

loop we’ll draw a short vertical line. We’ll pick a

random location, length, and grayscale color for

each line and then use those parameters to draw

that line.

// Loop a bunch of times
for(i=0;i<=2500;i++) {
​ // Pick a random location
​ let startX = rand(1, width-1);
​ let startY = rand(-75, height-1);
​ let length = rand(50,400);
​ // Pick a color
​ let gray = rand(0, 150);
​ // Draw the streak of rain
​ rainDrop(startX, startY, length, gray);
}

Now we need to write a couple of functions. A

function is kind of a subprogram that can be run

over and over again by other code. Usually, we write

these functions just before we need them. I like to

organize my functions at the end of the program.

That's just a convention I prefer to follow. Other

programmers might put them at the top or

sometimes even in the middle. Since you’ll be typing

this code in order, you’ll end up writing them last.

In the previous section we used a function called

rainDrop() to draw each streak of rain. That’s a

custom function that draws the actual line on the

canvas context we talked about earlier. We need to

write that function and we’ll do that here.

// Draw a short vertical line and drip it down
function rainDrop(x, y, l, g) {
​ var rgb = "rgb(" + g + "," + g + "," + g + ")"
​ ctx.beginPath();
​ ctx.strokeStyle = rgb;
​ ctx.lineWidth = 5;
​ ctx.moveTo(x, y);
​ ctx.lineTo(x, y + l+1);
​ ctx.stroke();
​ ctx.closePath();
}

Finally, we’ll write the rand() function that we’ve

used throughout. JavaScript has a Math.floor()

method that we can use to generate a random

number, but it’s a very long bit of code that I find

just a little confusing. We’ll encapsulate it in a

function so the code is a little easier to read and

write.

function rand(min, max) {
​ return Math.floor((Math.random() * max) + min);
}

That’s it.

Once it's written, we should be able to refresh the

page and see how it looks. Because we’re using

random positions the image will look different each

time it’s drawn. When you’re happy with the result

you can save it by right clicking on the image and

selecting Save Image As..

Complete Code

// Setup some params
var width = 4 * 300;
var height = 6 * 300;

// Grab the canvas element from the page
var myCanvas = document.getElementById("myCanvas");

myCanvas.width = width;
myCanvas.height = height;

// Grab the 2D context of the canvas to draw on
var ctx = myCanvas.getContext("2d");

//ctx.strokeStyle = "#FFFFFF";

// Loop a bunch of times
for(i=0;i<=2500;i++) {
​ // Pick a random location
​ let startX = rand(1, width-1);
​ let startY = rand(-75, height-1);
​ let length = rand(50,400);
​ // Pick a color
​ let gray = rand(0, 150);

​ setTimeout(
 ​ function () {
 ​ rainDrop(startX, startY, length, gray);
 ​ }, i
​);
}

// Draw a short vertical line and drip it down
function rainDrop(x, y, l, g) {
​ var rgb = "rgb(" + g + "," + g + "," + g + ")"
​ ctx.beginPath();
​ ctx.strokeStyle = rgb;
​ ctx.lineWidth = 5;

​ ctx.moveTo(x, y);
​ ctx.lineTo(x, y + l+1);
​ ctx.stroke();
​ ctx.closePath();
}

function rand(min, max) {
​ return Math.floor((Math.random() * max) + min);
}

In Falling Rain you’ll start to learn programming by

creating a piece of minimalist abstract computer art

by retyping code from this zine (pronounced zeen).

/

[1]

Issue 4

Splash of Code

