
 Splash of Code

Horizon Dust

Learn JavaScript by Making Computer Art

Joel Dare

1
Copyright © 2019

 Going On

Ifyou’vegottenthisfar,andhaveacompleteworkingimage,here
areafewideasabouthowyoucouldmakeityourown.Saveyour
work before you start to experiment.

Trysettingthe​likelyvariabletoadifferentvalue.Setittoawhole
numbersuchas125.Experimentwithothervaluesandseehow
they change the image.

Trychangingthesizeofthe​topEdgevariableandseehowthat
affects the finished image.

Trychangingthecolorofyourimage.Give“red”and“orange”​atry
as color options.

Foranevenbiggerchallenge,setthestrokestylejustbeforeyou
drawtherectangle.Pickarandomnumberbetween0and1and
assignittoavariablecalled​color​.Ifthevalueofcoloris0,set
ctx.strokeStyleand​ctx.fillStyleto“red”.Otherwise,setthemto
“orange”.

likeliness will remain the same as we move across the page
drawing dots but will reduce slightly as we move up the page to
draw another row of dots.

 // Reduce likeliness

 likely--;

Finally, we have our random number function. This makes the
code for picking a random number a little smaller and easier to
read wherever ​rand()​ was used above.

// Pick a random number

function rand(min, max) {

max = max + 1;

let rand = Math.random();

return Math.floor((rand * max) + min);

}

That’s it. Now we should be able to refresh the page and see how it
looks. Because we’re using randomness the image will look different
each time it’s drawn. When you’re happy with the result ​you can
save it by right clicking on the image and selecting ​Save Image As ​.

Introduction

Splash of Code is a series of short zines. In each book you'll make
an art piece by typing code from these pages into your computer.
No previous experience, special tools, or skills are necessary. You’ll
be working in JavaScript, a language that works in your web
browser. Along the way you'll start to absorb some computer
programming techniques. In the end you'll create an art piece
that's fun to display and discuss.

Our goal is to create a simple, abstract, image inspired by dust
over the horizon at sunset. I’ll print mine from an old black and
white laser printer on standard paper. If you want to print yours,
any printer will do.

Remember that you don’t need to understand everything you’re
entering. Just relax and copy the code. You should end up with a
great piece of artwork you can be proud of.

Getting Started

You’llneedacomputerwithawebbrowser.Nothingelseis
required.I’vecreatedabasicHTMLfileforyouon​CodePen​,atool
that lets you write code online. Open the URL below to get started.

https://codepen.io/codazoda/pen/aPVGGx

Thisbookincludesbotha​CompleteCodelistinganda​CodeWalk

Through​.Thewalkthroughexplainseachofthesmallsectionsin
moredetail.Youcanstartateithersection.Ifyouwanttogetright
towork,startwiththe​CompleteCode​.Ifyou’dratherreadalittle
moreaboutit,startatthe​CodeWalkThrough​andreaditallthe
waythrough.Onceyou’rereadytostart,turntothe​Complete

Code​ section and retype the code into CodePen.

Theprojectconsistsoftwofiles.AnHTMLfilethatyouwon’tneed
tochangeandaJavaScriptfile.You’lltypeyourworkintothe
JavaScript file.

Asyouworkonthisprojectyou’llprobablyrunintotyposthat
createerrors.Iftheimagedoesn’tdrawatall,orinawaythatyou
expect,doublecheckthatyoutypedeverythingcorrectlyandthen
lookattheoutputinthedeveloperconsoletoseeifthereareany
errors.Becauseeachbrowserisdifferent,you’llwanttosearchthe
internetforinstructionsonhowtoopenthedeveloperconsolein
yourparticularwebbrowserorrefertotheinstructionsinthe
How to Code​ zine.

Onceyou’vecreatedanimagethatyou’rehappywithyoucansave
it by right clicking on the image and selecting ​Save Image As​.

Becausewe’regoingtodrawrectangleswe’llwanttosetastroke
(oroutline)styleandafillstyle.Inbothcaseswe’llsetthemto
black​.

// Set the stoke style

ctx.strokeStyle = "black";

ctx.fillStyle = "black";

We’regoingtostartatthebottomofthecanvasandworkourway
up.We’regoingtodrawrandomdots(actuallyrectangles)across
thepageandaswemoveupthenumberofdotswedrawwill
decrease,makingeachlineofrandomdotsalittlelighterthanthe
linedrawnbeforeit.Let’ssetupafewvariablesandthencreatea

for​ loop.

// Loop from the bottom to the top

var y = 0;

var shouldDraw = 0;

// Figure out the top edge size (20%)

var topEdge = (height / dotSize) * 0.20;

// How likely are we to draw a pixel

var likely = height / dotSize;

for(y=height; y>0; y=y-dotSize) {

 // Drawing happens here

}

Nextwejumpinsidetheforloopandwedrawarectangleatthe
random position we select.

 // Pick a random number

 shouldDraw = rand(0, likely);

 if(shouldDraw >= topEdge) {

 ctx.fillRect(x, y, dotSize, dotSize);

 }

Movingbackoutsidetheforloop,wewanttoreducethelikeliness
thatwe’lldrawadot.Aswemoveupthepageeachlinewillbeless
andlesslikelytodrawarandomdotatthecurrentlocation.The

Code Walk Through

In this section we’ll discuss how the code works but we’ll jump
around a bit. Read this section all the way through and use the
Complete Code​ listing as your reference when typing the code.

First we’ll set up some page parameters. We’ll set a resolution of
300 pixels per inch, set the width to 4 inches, and set the height to
6 inches. We’ll also set a dot size of 10 pixels. This is how large
we’ll draw each dot or rectangle on the image.

// Setup some params

const resolution = 300;

var width = 4 * resolution;

var height = 6 * resolution;

var dotSize = 10;

Now we’ll grab the canvas element from our HTML page and
assign it to the ​myCanvas ​ variable.

// Grab the canvas element from the page

var myCanvas = document.getElementById("myCanvas");

Next we set the canvas width and height to the values we
calculated earlier.

// Set the canvas width and height

myCanvas.width = width;

myCanvas.height = height;

Now we grab the context of the canvas to draw on and we save it in
a variable that we call ​ctx​.

// Grab the 2D context of the canvas to draw on

var ctx = myCanvas.getContext("2d");

Pixels, Points, Dots, and Inches

When we’re drawing on the canvas in JavaScript we typically work
in pixels. You can’t really draw an image in inches because we’re
drawing on the computer screen and different screens have pixels
of different physical sizes. If you were to draw an image that was
200 pixels wide and measure it with a ruler you’d find that it’s a
different size on your computer than it is on my computer.

When we print something we typically print a bunch of dots in an
inch on the page. This is called the print ​resolution​. Let’s say that
your printer is capable of printing 300 dots per inch. If we want to
print an image that’s 4 inches wide, we could make the image
4 x 300 pixels, or 1200 pixels, wide.

When you print that image you can still print it any size you like. If
you use your printers default settings it will probably stretch to the
full size of the page, minus the margins. When that happens the
printed image is no longer 300 dots per inch. Your printer did
some interpolation and increased the size of the image.

It can all get a bit confusing. Keep in mind that software on your
computer can stretch an image, you’re printer can stretch it, and
the browser can stretch it, just to name a few. Sometimes it’s
easiest just to create it at a “high enough” resolution like 300 or
600 dots per inch and let the image viewing software figure it out.

Complete Code

// Setup some params

const resolution = 300;

var width = 4 * resolution;

var height = 6 * resolution;

var dotSize = 10;

// Grab the canvas element from the page

var myCanvas = document.getElementById("myCanvas");

// Set the canvas width and height

myCanvas.width = width;

myCanvas.height = height;

// Grab the 2D context of the canvas to draw on

var ctx = myCanvas.getContext("2d");

// Set the stoke style

ctx.strokeStyle = "black";

ctx.fillStyle = "black";

// Loop from the bottom to the top

var y = 0;

var shouldDraw = 0;

// Figure out the top edge size (20%)

var topEdge = (height / dotSize) * 0.20;

// How likely are we to draw a pixel

var likely = height / dotSize;

for(y=height; y>0; y=y-dotSize) {

 // Loop from the left to the right

 for(x=0; x<=width; x=x+dotSize) {

 // Pick a random number

 shouldDraw = rand(0, likely);

 if(shouldDraw >= topEdge) {

 ctx.fillRect(x, y, dotSize, dotSize);

 }

 }

 // Reduce likeliness

 likely--;

}

// Pick a random number

function rand(min, max) {

 max = max + 1;

 let rand = Math.random();

 return Math.floor((rand * max) + min);

}

