
Splash of Code

Horizon Dust

Learn JavaScript by Making Computer Art

Joel Dare

2
Copyright © 2019

Foreword

I believe the best way to learn programming is by typing someone

else's code. You'll have to read it all, in order to type it, and you'll

probably make a few mistakes. Then you'll have to learn how to

spot and correct errors.

This is a short book. It's short for a few reasons. First, because

you'll find that copying someone else's code, although not difficult,

takes quite a bit of time. You'll probably have a few challenges the

first time, but re-check the code and try again and it will become

easier. Second, It's short because I like reading short books and

hope you will too. Like you, I'm busy doing things I love. I work

full time and have dozens of hobbies that keep me busy. I hope

you'll be glad this book gets to the point quickly. Third, this book is

created in the spirit of “zines”. Zines are short small-circulation

self-published booklets. They’re an art form that I’ve discovered

and love.

In each book you'll make an art piece by typing code from these

pages into your computer. No previous experience, special tools,

or skills are necessary. Along the way you'll start to absorb some

computer programming techniques. In the end you'll create an art

piece that's fun to display and discuss.

You’ll be working in JavaScript, a language that works in your web

browser. If you’d like to go a little deeper, read How to Code for a

quick introduction to JavaScript programming. It provides a basic

understanding of the JavaScript console, data types, variables,

math, and functions. You should find the background information

there helpful and interesting.

Introduction

Our goal is to create a simple, abstract, image inspired by dust

over the horizon at sunset. You can print the finished image or use

it as a screensaver or computer wallpaper.

Remember that you don’t need to understand everything you’re

entering. Just relax and copy the code. You should end up with a

great piece of artwork you can be proud of.

Getting Started

You’ll need a computer with a web browser. Nothing else is

required. I’ve created a basic HTML file for you on CodePen, a tool

that lets you write code online. Open the URL below to get started.

https://codepen.io/codazoda/pen/aPVGGx

This book includes both a Complete Code listing and a Code Walk

Through. The walk through explains each of the small sections in

more detail. You can start at either section. If you want to get right

to work, start with the Complete Code. If you’d rather read a little

more about it, start at the Code Walk Through and read it all the

way through. Once you’re ready to start, turn to the Complete

Code section and retype the code into CodePen.

The project consists of two files. An HTML file that you won’t need

to change and a JavaScript file. You’ll type your work into the

JavaScript file.

As you work on this project you’ll probably run into typos that

create errors. If the image doesn’t draw at all, or in a way that you

expect, double check that you typed everything correctly and then

look at the output in the developer console to see if there are any

errors. Because each browser is different, you’ll want to search the

internet for instructions on how to open the developer console in

your particular web browser or refer to the instructions in the

How to Code zine.

Once you’ve created an image that you’re happy with you can save

it by right clicking on the image and selecting Save Image As.

Pixels, Points, Dots, and Inches

When we’re drawing on the canvas in JavaScript we typically work

in pixels. You can’t really draw an image in inches because we’re

drawing on the computer screen and different screens have pixels

of different physical sizes. If you were to draw an image that was

200 pixels wide and measure it with a ruler you’d find that it’s a

different size on your computer than it is on my computer.

When we print something we typically print a bunch of dots in an

inch on the page. This is called the print resolution. Let’s say that

your printer is capable of printing 300 dots per inch. If we want to

print an image that’s 4 inches wide, we could make the image

4 x 300 pixels, or 1200 pixels, wide.

When you print that image you can still print it any size you like. If

you use your printers default settings it will probably stretch to the

full size of the page, minus the margins. When that happens the

printed image is no longer 300 dots per inch. Your printer did

some interpolation and increased the size of the image.

It can all get a bit confusing. Keep in mind that software on your

computer can stretch an image, you’re printer can stretch it, and

the browser can stretch it, just to name a few. Sometimes it’s

easiest just to create it at a “high enough” resolution like 300 or

600 dots per inch and let the image viewing software figure it out.

Complete Code

// Setup some params
const resolution = 300;
var width = 4 * resolution;
var height = 6 * resolution;
var dotSize = 10;

// Grab the canvas element from the page
var myCanvas = document.getElementById("myCanvas");

// Set the canvas width and height
myCanvas.width = width;
myCanvas.height = height;

// Grab the 2D context of the canvas to draw on
var ctx = myCanvas.getContext("2d");

// Set the stoke style
ctx.strokeStyle = "black";
ctx.fillStyle = "black";

// Loop from the bottom to the top
var y = 0;
var shouldDraw = 0;
// Figure out the top edge size (20%)
var topEdge = (height / dotSize) * 0.20;
// How likely are we to draw a pixel
var likely = height / dotSize;
for(y=height; y>0; y=y-dotSize) {
 // Loop from the left to the right
 for(x=0; x<=width; x=x+dotSize) {
 // Pick a random number
 shouldDraw = rand(0, likely);
 if(shouldDraw >= topEdge) {
 ctx.fillRect(x, y, dotSize, dotSize);
 }
 }
 // Reduce likeliness

 likely--;
}

// Pick a random number
function rand(min, max) {
 max = max + 1;
 let rand = Math.random();
 return Math.floor((rand * max) + min);

}

Code Walk Through

In this section we’ll discuss how the code works but we’ll jump

around a bit. Read this section all the way through and use the

Complete Code listing as your reference when typing the code.

First we’ll set up some page parameters. We’ll set a resolution of

300 pixels per inch, set the width to 4 inches, and set the height to

6 inches. We’ll also set a dot size of 10 pixels. This is how large

we’ll draw each dot or rectangle on the image.

// Setup some params
const resolution = 300;
var width = 4 * resolution;
var height = 6 * resolution;
var dotSize = 10;

Now we’ll grab the canvas element from our HTML page and

assign it to the myCanvas variable.

// Grab the canvas element from the page
var myCanvas = document.getElementById("myCanvas");

Next we set the canvas width and height to the values we

calculated earlier.

// Set the canvas width and height
myCanvas.width = width;
myCanvas.height = height;

Now we grab the context of the canvas to draw on and we save it in

a variable that we call ctx.

// Grab the 2D context of the canvas to draw on
var ctx = myCanvas.getContext("2d");

Because we’re going to draw rectangles we’ll want to set a stroke

(or outline) style and a fill style. In both cases we’ll set them to

black.

// Set the stoke style
ctx.strokeStyle = "black";
ctx.fillStyle = "black";

We’re going to start at the bottom of the canvas and work our way

up. We’re going to draw random dots (actually rectangles) across

the page and as we move up the number of dots we draw will

decrease, making each line of random dots a little lighter than the

line drawn before it. Let’s setup a few variables and then create a

for loop.

// Loop from the bottom to the top
var y = 0;
var shouldDraw = 0;
// Figure out the top edge size (20%)
var topEdge = (height / dotSize) * 0.20;
// How likely are we to draw a pixel
var likely = height / dotSize;
for(y=height; y>0; y=y-dotSize) {
 // Drawing happens here
}

Next we jump inside the for loop and we draw a rectangle at the

random position we select.

 // Pick a random number
 shouldDraw = rand(0, likely);
 if(shouldDraw >= topEdge) {
 ctx.fillRect(x, y, dotSize, dotSize);
 }

Moving back outside the for loop, we want to reduce the likeliness

that we’ll draw a dot. As we move up the page each line will be less

and less likely to draw a random dot at the current location. The

likeliness will remain the same as we move across the page

drawing dots but will reduce slightly as we move up the page to

draw another row of dots.

 // Reduce likeliness
 likely--;

Finally, we have our random number function. This makes the

code for picking a random number a little smaller and easier to

read wherever rand() was used above.

// Pick a random number
function rand(min, max) {
​ max = max + 1;
​ let rand = Math.random();
​ return Math.floor((rand * max) + min);
}

That’s it. Now we should be able to refresh the page and see how it
looks. Because we’re using randomness the image will look different
each time it’s drawn. When you’re happy with the result you can

save it by right clicking on the image and selecting Save Image As.

Going On

If you’ve gotten this far, and have a complete working image, here

are a few ideas about how you could make it your own. Save your

work before you start to experiment.

Try setting the likely variable to a different value. Set it to a whole

number such as 125. Experiment with other values and see how

they change the image.

Try changing the size of the topEdge variable and see how that

affects the finished image.

Try changing the color of your image. Give “red” and “orange” a try

as color options.

For an even bigger challenge, set the stroke style just before you

draw the rectangle. Pick a random number between 0 and 1 and

assign it to a variable called color. If the value of color is 0, set

ctx.strokeStyle and ctx.fillStyle to “red”. Otherwise, set them to

“orange”.

More Reading

Splash of Code is a complete series of short zines. You’ll find

additional issues on our website at the address below.

https://splashofcode.com

